Efficient k-Support Matrix Pursuit

نویسندگان

  • Hanjiang Lai
  • Yan Pan
  • Canyi Lu
  • Yong Tang
  • Shuicheng Yan
چکیده

In this paper, we study the k-support norm regularized matrix pursuit problem, which is regarded as the core formulation for several popular computer vision tasks. The k-support matrix norm, a convex relaxation of the matrix sparsity combined with the 2-norm penalty, generalizes the recently proposed ksupport vector norm. The contributions of this work are two-fold. First, the proposed k-support matrix norm does not suffer from the disadvantages of existing matrix norms towards sparsity and/or low-rankness: 1) too sparse/dense, and/or 2) column independent. Second, we present an efficient procedure for k-support norm optimization, in which the computation of the key proximity operator is substantially accelerated by binary search. Extensive experiments on subspace segmentation, semi-supervised classification and sparse coding well demonstrate the superiority of the new regularizer over existing matrix-norm regularizers, and also the orders-of-magnitude speedup compared with the existing optimization procedure for the k-support norm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A sharp recovery condition for sparse signals with partial support information via orthogonal matching pursuit

This paper considers the exact recovery of k-sparse signals in the noiseless setting and support recovery in the noisy case when some prior information on the support of the signals is available. This prior support consists of two parts. One part is a subset of the true support and another part is outside of the true support. For k-sparse signals x with the prior support which is composed of g ...

متن کامل

Similar sensing matrix pursuit: An efficient reconstruction algorithm to cope with deterministic sensing matrix

Deterministic sensing matrices are useful, because in practice, the sampler has to be a deterministic matrix. It is quite challenging to design a deterministic sensing matrix with low coherence. In this paper, we consider a more general condition, when the deterministic sensing matrix has high coherence and does not satisfy the restricted isometry property (RIP). A novel algorithm, called the s...

متن کامل

Online Recovery Guarantees and Analytical Results for OMP

Orthogonal Matching Pursuit (OMP) is a simple, yet empirically competitive algorithm for sparse recovery. Recent developments have shown that OMP guarantees exact recovery of K-sparse signals with K or more than K iterations if the observation matrix satisfies the restricted isometry property (RIP) with some conditions. We develop RIP-based online guarantees for recovery of a K-sparse signal wi...

متن کامل

Random Subdictionaries and Coherence Conditions for Sparse Signal Recovery

The most frequently used condition for sampling matrices employed in compressive sampling is the restricted isometry (RIP) property of the matrix when restricted to sparse signals. At the same time, imposing this condition makes it difficult to find explicit matrices that support recovery of signals from sketches of the optimal (smallest possible) dimension. A number of attempts have been made ...

متن کامل

Support Recovery with Orthogonal Matching Pursuit in the Presence of Noise: A New Analysis

Support recovery of sparse signals from compressed linear measurements is a fundamental problem in compressed sensing (CS). In this paper, we study the orthogonal matching pursuit (OMP) algorithm for the recovery of support under noise. We consider two signal-to-noise ratio (SNR) settings: i) the SNR depends on the sparsity level K of input signals, and ii) the SNR is an absolute constant indep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014